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1. INTRODUCTION

The aim of this paperis to analyse the geometricalstructureof degenerate

I.agrangiansand to investigatethe possibility of establishinga consistentregular

Lagrangiandescriptionfor the associateddynamicalsystems.More precisely,we

will addressthe following question:givena degenerateLagrangianL defined on

somevelocity phasespace(i.e. a tangentbundle) is it possibleto constructanother

velocity phasespaceand a regularLagrangianwhich containsthesamedynamical

information as L? We may referto this problem as the<<regularizationproblem>>

for degenerateLagrangians.

Conditions will be found which guaranteethe existenceof such a regulari-

zation and a relevantclassof Lagrangianswill be identified for which the above

questionadmits anattirmativeanswer.

Thestarting point of our analysiswill be thenatural reductionof theoriginal

velocity phasespacewith respectto the characteristicdistribution of thepresym-

plectic 2-form WL associatedwith the givendegenerateLagrangianL. Thereduced

spaceis then the obvious candidatefor the new velocity phasespace,providedit

can be equippedwith an integrable almost tangentstructure. Our approachto

the regularizationproblem turns out to be interestingfor physical as well as

mathematicalreasons.

From the physical point of view, degenerateLagrangiansareextremelyimpor-

tant and areused for the descriptionof basicphysical theories(gaugetheories).

There exists a canonical approachto the regulanzationproblem which traces

back to the work of P.A.M. Dirac [1] and which has recently beencompleted

with the developmentof the presymplecticconstraintalgorithm (cf. M. Gotay

et al. [2]) andthe Marsden-Weinsteinreductiontheory [3], where the zero level
set of some momentummap servesto identify the constraintsof the problem.

In spite of this, themodemapproachto thequantizationof field theoriesis based

on the Lagrangianratherthan the Hamiltonian formulation of thesetheories.It

thereforeseemsuseful to developa completeLagrangiantheory for the reduction

of degeneratesystems.Previouswork in this direction can be found for instance

in [4], [5] and [6]. One of the merits of a pureLagrangiantreatment of degene-

rate systemsis alsoto be found in its contribution to a completeunderstanding

of the real nature of gaugetransformations,which play a central role in physical

theoriesand which, in the canonicalpicture, havebeenidentified with transfor-

mationsgeneratedby first classconstraints.
From the mathematicalpoint of view, the geometryof a Lagrangianon a tan-

gent bundlehasmanyinterestingfeatures.First of all, the presymplecticstructure

associatedwith L and the natural integrablealmost tangentstructureof the

tangentbundle are, in a certainsense,<<intertwining>> operators.In particular, this
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entails a remarkablerelation betweenthe dimensionof the full characteristic
distribution of WL and the dimensionof its vertical part, from which one may
deduce a natural classification of Lagrangians.In developing the Lagrangian
reduction theory, we first establish conditions underwhich the reducedsym-
plectic manifold,obtainedby taking the quotientof the original tangentbundle

with respectto the characteristicdistribution of WL, inherits anintegrablealmost
tangentstructure.We then further investigatewhen the givendegenerateLagran-

gian inducesa regular Lagrangiansystemon the reduced<<velocity phasespace>>.
Strictly speaking,this reducedspacewill not be (diffeomorphic to) a genuine

tangent bundle in general.It will be pointedout, however,that the conceptof

a Lagrangiansystemcan be extendedin a naturalway to the broaderframework
of manifoldswhich possesan integrablealmosttangentstructure.

A specific classof Lagrangiansis singledout for which the proposedreduction
schemeworks very nicely, namely those Lagrangiansfor which the associated
characteristicdistribution is spannedby the completeandvertical lift of a distri-

bution definedon the basemanifold(configurationspaceof the system).
The relation betweenthe Lagrangianreductiontheory and theusualcanonical

reductionproceduresis investigated.A key-roleis therebyassignedto the Legen-
dre map.This analysis in particularrevealsa closeconnectionbetweenthereduc-
tion of degenerateLagrangiansystemsand the Marsden-Weinsteinreductionof

Hamiltonian systemswith symmetry.A clear illustration of this link is obtained
for systemsof mechanicaltype (i.e. systemswith a Hamiltonian of the form
kinetic pluspotentialenergy).

The paper is organized as follows. In section 2 we developthe Lagrangian
reduction theory after giving a brief summaryof some relevant factsfrom the
geometryof Lagrangiandynamics.Section 3 is devotedto the relation between
the Lagrangian and the canonical reduction procedures.Some examplesand
applicationsare discussedin section4. Weconcludewith a few generalcomments

in section 5. Two appendicesare devoted to the proofs of some intermediate
results which are also of some interest in their own. In the presentpaper we

confine ourselvesto finite dimensionalsystems.The infinite dimensionalcase,

importantfor physical applications,will be consideredin later work. All objects
(mappings,vectorfields,forms . . . ) are assumedto beof classC~.

2. REDUCTION OF DEGENERATE LAGRANGIAN SYSTEMS

2.1. Geometryof Lagrangiandynamics

We start with a brief review of some basic facts from the tangent bundle
geometryfor Lagrangiandynamics(seee.g. [7], [8]).

Let Q be a finite dimensional differentiable manifold with tangent bundle
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TQ, also calledvelocity phasespace,and tangentbundle projectionTQ: TQ —÷ Q.
Naturalbundlecoordinateson TQ are denotedby (q’, u’).

The bundle of vertical tangent vectors V(TQ) is the subbundle of T(TQ)

definedby

V(TQ)= e T(TQ) TQ*(~) = 0).

On TQ thereexists a canonical type (1,1) tensorfield S, sometimescalled

the vertical endomorphism,which definesthe naturalalmost tangentstructure

on TQ and which is characterizedby
(i) Im(S)=Ker(S)= V(TQ),

(ii) the NijenhuistensorNsof S vanishes.

(cf. [7], [8], [9]).
Recall that the Nijenhuistensorof a type (I , 1) tensor field R on a manifold

is a type (I ,2) tensorfield NR which is definedby its action on vectorfields as

follows

NR(X,Y)=R2([X, Y]) + [R(X),R(Y)J—R([R(X), Y])—R([X,R(Y)]).

The first of the above propertiesof S immediately implies ~2 = 0. In terms

of naturalbundlecoordinateson TQ,S reads

a
5= — ®dq’.

a~

The dilation vectorfield on TQ, which is thegeneratorof the I -parametergroup

of dilations(q, v)-~ (q, etv), is denotedby ~. In coordinates,

a
—

a~‘

A vector field r on TQ is calleda second-orderequationfield if S(I’) = itt. This
means that r is locally of the form F = u~alaq’ + A’(q, v) a/au’. To each

smoothfunctionL on TQ onecanassigna I -form 0L definedby

0L = dL OS

L is calleda Lagrangianand0L its Poincaré-Cartan1 -form. If we put

= dOL

then the following fundamentalrelation existsbetweenthe 2-form WL and the

canonicaltensorfield S:

(2.1) S(X)JwL=_(XJWL)0S,
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for eachvectorfield X on TQ (cf. [8]).
The energyassociatedwith L is EL = i~(L)— L.

The Euler-Lagrangeequations correspondingto L can then be written in
the form

(2.2) XJWL=—dEL.

In coordinateswehavethefollowing expressions:

aL
(2.3a) 0L —~ dq’,

ad

a2L a2L
(2.3b) WL = . . dv~A dq1 + . . dq’ A dq’,

au’ au’ aq’ av’

a21. aL . . a2i..
(2.3c) dE = . . — — dq1 + U’ . . du1.av’ aq’ aq’ au’ au’

If L is regular,i.e. if the Hessianmatrix (a2L/au’ au’) is nonsingular,the 2-form

WL is symplectic and the dynamicalequation(2.2) possessesa uniquesolution
X, the Euler-Lagrangevector field correspondingto L, which is moreovera
second-orderequationfield. The latter canbe easily verified by combining(2.1)

and(2.2) andusingthe property

(2.4) Lth~’L0S,

(cf. [8]). For many interestingphysical applicationsthe regularity assumption

is too restrictiveand one has to extendthe framework in order to allow for
singular, i.e. degenerate,Lagrangians.Singularity of L in particular implies that

is no longerof maximal rank. We will alwaysassume,however,that therank
of WL is constanton TQ, which meansthat WL is a presymplecticform according

to the followinggeneraldefinition:

DEFINITION 2.1. A presymplectic form on a manifold is a closed 2-form of
constantrank. •

It then follows that the set

charwL={~ET(TQ)I~JwL(rQt(~))=0)

is a subbundleof T(TQ) which moreoverdefinesan involutive distribution on
TQ, the characteristicdistribution of OiL. With some abuseof notationwe will

also write char OiL for the set of smoothsectionsof this bundle, i.e. for the
set of characteristicvectorfields of OiL. More precisely, a vector field Z on TQ
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is said to belongto char OiL if Z ..J OiL = 0.

For a degenerateLagrangian, the dynamicalequationX J = — dEL will

not possessa globally defined solution in general,and even if it exists it will

not be unique.The condition for the existenceof a global solution is thatEL
should be constanton the leavesof the foliation definedby char OiL. i.e. for
eachcharacteristicvector field Z of OiL one shouldhave (Z, dEL) = 0. If these

equationsare not identically satisfied they give rise to contraints.For the
study of the solvability of the dynamicalequation (2.2) one can then appeal

to the geometric constraint algorithm developed by Gotay et a!. [21, [5],
[61.

In our analysis of the reduction problem for degenerateLagrangianswe will

confine ourselves,however,to those Lagrangiansfor which the equation(2.2)

possessesa global solution. For the sake of clarity we adopt here the follo-

wing definition:

DEFINITION 2.2. A (degenerate) Lagrangian L is said to admit a global dyna-

mics if thereexists a globally definedvector field X on TQ satisfyingX ..J OiL =

=—dEL. U

The following resultis straighforward.

PROPOSITION2.1. If L admits a global dynamics then the generalsolution of
the dynamicalequation (2.2) is of the form X + Z, where X is any particular

solution andZ belongsto char OiL. U

In order to study the reduction of degenerateLagrangiansystems,with OiL

presymplectic,we also have to require that the foliation definedby char OiL

is actually a fibration. This implies that the quotientor leaf spaceTQ/charOiL

admits a manifold structureand the projection 7TL : TQ -÷ TQ/charOiL becomes

a surjectivesubmersion.
Summarizing.we can say that the subsequentanalysisof degenerateLagran-

gianswill rely on the following threebasicassumptions:
(Al) OiL is presymplectic;

(A2) L admitsa global dynamics(in the senseof definition 2.2);
(A3) the foliation definedby char OiL is a fibration.

2.2. A classificationof Lagrangians

From (2.1) and the propertyIm S = V(TQ) it immediately follows that
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(2.5) S(charOiL) C charOiL fl V(TQ)

for any (degenerate) Lagrangian L. For brevity we put

char OiL fl V(TQ) = V(charOiL).

Thesamenotationwill be usedfor the set of vertical characteristicvectorfields

of OiL. The following propertiesof V (charOiL) areeasily verified:

(i) V(charOiL) definesan integrabledistribution on TQ;
(2.6) (ii) V(charOiL) = Ker (S

A simple algebraic argument based on (2.5) and (2.6) reveals the following
remarkablerestrictionon the dimensionof the distribution V(char OiL):

dim [V(char OiL)] ~ — dim [charOiL]
2

(see also [10]). Using this propertywe can now distinguishthree types of La-

grangians:

Type I : if dim [char OiL] = dim [V(char OiL)] = 0;

Type II : if dim [charOiL] = 2dim [V(charOiL)] * 0;
TypeIII : if dim [char OiL] < 2dim [V(char WL)l.

Type I Lagrangiansare just regular Lagrangians,i.e. those for which OiL is

symplectic. As far as the reductionproblem for degenerateLagrangiansis con-
cerned it will be seenthat type II Lagrangians and, in particular, a specific sub-

class of them, will play a prominent role. An immediate characterizationof

type II Lagrangiansis given by:

LEMMA 2.1. A LagrangianL is of typeII if and only if S(charOiL) = V(charOiL).

Proof From (2.6) we deduce that dim [char OiL] — dim [V(char OiL)] =

= dim [S(char OiL)], from which the proof now easily follows, also taking into
account(2.5). •

As mentionedalreadyin the previoussubsection,we will restrictour attention
to Lagrangians which admit a global dynamics. From a physical point of view

the casesof interestare mainly those for which among the possiblesolutions
of the dynamical equation there exists a second-orderequationfield. In that
respect the following theoremalready underscoresthe importanceof type II
Lagrangians.
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THEOREM 2.1. If L is a type11 Lagrangian which admits a global dynamics, then

thereexistsa second-orderequationfield F on TQsatisfyingF I Oi~= — dEL.

Proof Let X be any particularsolution of the dynamicalequation.Using (2.1),
(2.2) and (2.4) we obtain

S(X)JOiL= dELOS

~JOiL.

from which it follows that S(X)— ~ E char OiL. Since both S(X) and t,, are

vertical we even have S(X)—~EV(charOiL). According to lemma 2.1 there

thenexistsa vectorfield Z E char OiL suchthat

S(X)—~=S(Z).

Clearly, F = X — Z is also a solution of the dynamical equation (cf. proposition

2.1) and,moreover,the previousrelationimplies that S(f) = ~. i.e. F is a second-
-orderequationfield.

This result has previously beenestablishedin [10] in the context of type II

Lagrangianswith constraints.However, in general, the second-orderequation

field constructedin that broadercontextneednot be tangentto the constraint
submanifoldandso its relevancethenbecomesratherdoubtful.

For a discussionof the second-orderequationproblem for generaldegenerate

Lagrangiansin the presenceof constraints,wealsoreferto [6].

Before proceedingwe first recall that for any vectorfield X on the basemani
told Q one candefinethe certicaland the completelift to TQ, denotedby X~and

XC, respectively (seee.g. [8]). In coordinates,puttingX = X’ alaq’, we have

a a ax1 a
X°= —~ , XC = A’ —- + v1 —-

aq’ av’

Forany two vectorfields X and Y on Q onecanverify that

(2.7) [XC, ye] [X, yy~, [Xv, ~C] = [X, y]U, [Xv, yv~=

and

(2.8) £,~S=.C
0S=0

(cf. [8]).
If for a given degenerateLagrangianL and some vector field X on Q we have

XCE char OiL, then by (2.5) X
0= S(XC)E V(char OiL). Moreover, using the

first relation of(2.7) and taking accountof theintegrability of charOiL, the folio-
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wing result is straightforward.

PROPOSITION2.2. The set V = { X E .~T(Q)X~E charOiL) defines an integrable

distribution on Q.

Let g be a Lie algebraof vectorfields on Q. We call the tangentalgebraof ~,

denotedby T9, the algebradefinedby the completeand vertical lifts of vector
fields in g. Each element of Tg can be identified with a couple (XC, Y

0) for

someX, y~g. Taking accountof the bracketrelations(2.7) onecantheneasily
establish an jsomorphism between T

9 and the semi-direct product g o~with

the Lie bracketon n ~ definedin termsof the adjoint actionof ~ onto itself,
i.e. [(X1, Y1), (X2, Y2)] = ([X1, X2], adX1(y2) — ad X2(Y1)), with adX(Y) =

= [X, Y]. The conceptof a tangentalgebraof vector fields in fact only requires

an integrabledistribution on Q, i.e. ~neednotbe a finite dimensionalLie algebra.

Let us first consideran arbitrary distribution V on Q. The spanof the set of all
vertical and completelifts of vectorfields in V is a distribution on TQ which we

call the <<tangentdistribution>> of V. Thefactthat thisprocedureactuallydefines
a distribution on TQ may not be immediately obviousin view of the non-local

natureof the completelift.However, for any vectorfield X and any functionf
on Q we have

(fX)C=(TQ*f)XC+(df)XV,

where df is the function on TQ definedby df(x) = (x, df(TQ(x))). So, (fX)C

lies in the span of XC andX~.It follows that if X1, . . . , Xk is a local basisfor V
then each vertical and completelift of a vector field in V lies in the spanof

X~,X~ X~,X~,X,v X~.Thus the tangentdistribution of V is a distribu-
tion of dimension2dim (V). Its vertical part, which is always integrable, is of

dimension dim (V) and the tangent distribution as a whole is integrableif and
only if V is integrable. In that casethe tangentdistribution is indeeda tangent

algebrain the sensedefinedabove.
Given a degenerateLagrangianL on TQ we introducethe following definition.

DEFINITION 2.3. char OiL is a tangent distribution if thereis a distribution V on
Q suchthat char OiL is spanned by the completeandvertical lifts of vectorfields
mV. •

From the previous considerationsit follows that the distribution V is neces-

sarily integrable.
If char OiL is a tangent distribution it admits a local basisof the form X~,x~,

X~.X~.X~ X~,for some vector fields X1 on Q. Since S(X)= one
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can easily see that S(charOiL) = V(charOiL). Consequently,a Lagrangian for

which charOiL is a tangentdistribution is necessarilyof type II.

2.3. Lagrangiansystemson integrablealmosttangentmanifolds

SupposeL is a Lagrangiandefined on TQ such that the assumptions(Al).

(A2) and (A3) from section 2.1 hold. The ideaof reduction we wish to develop

further on consists,roughly speaking,of finding conditionsunderwhich onecan

associateto the given degeneratesystem a regular Lagrangian system on the

quotient space TQ/charOiL. An apparentprerequisite for such a reduction is

that it should be possible to conceivethe quotient spaceas a tangent bundle

of some manifold or, at least, to provide it with an integrable almost tangent

structure. In a previouspaperby one of us it hasindeedbeenpointed out that

the framework of integrable almost tangent structureslends itself already to

the conception of a Lagrangiandynamics(cf. [11]). The purposeof this section

is to elaboratea bit further on this idea.

First, recall that an integrable almost tangentstructure on a manifold M is

definedby a type (1,1) tensor field S suchthat for eachmEM the linearendo-

morphism ~m satisfies Im = Ker(Sm)~and that the Nijenhuis tensor of
S vanishes.The latter in particular entails that thedistribution definedby Im (S)

on M is involutive. Clearly, M must be even dimensionaland, moreover,one

can always locally find adaptedcoordinates(q. v) in termsof which S = a/au’ ®

® dq’. If the foliation induced by Im (S) on M is a fibration and if the leaves

satisfy a certain completenesscondition then, by a suitable choice of a zero

section,M becomesisomorphic to a tangent bundle. For more details, seee.g.
[11], [14], [15] and referencestherein. On an integrablealmosttangentmanifold
(M, 5) we considerthe classof vectorfields F for which

(2.9) £~SoS=S, SOI~rS=_S,

(the tensor fields are regardedhereas operatorson vector fields). Theseproper-

ties are in particular shared by any second-orderequation field on a tangent

bundle, with respect to the canonical type (1,1) tensor field S (see e.g. [9]).
Moreover, it has recently beenarguedin Sarlet et al. [13] that it areprecisely

the relations(2.9) which play an important role in the study of someproperties

of Lagrangian systems, rather than the more stringent condition S(F) = A. In

adaptedcoordinates,a vector field F satisfying (2.9) is of the form F = (v’ +
+ X’(q)) a/aq’ + A’(q, v) a/au’.

Inspired by thenecessaryandsufficient conditionsfor a second-orderequation

field on a tangentbundle to be (locally) an Euler-Lagrangevector field (see

e.g. [12]), we propose the following notion of regular Lagrangiansystem on an

integrablealmost tangentmanifold (M, S).
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DEFINITION 2.4. A vector field F, satisfying(2.9), is calleda regular Lagrangian

systemif thereexistsa symplecticform Oi onM suchthat
(i) for eachm EM the subspaceIm ~ of TmM is Lagrangianwith respect

to Oim~i.e., Oim(X~y) = 0 for all x, y E Im (5);

(ii) £
1,Oi = 0. U

Using(i) and (ii) onecanshow that S and Oi are related by

(2.10) ~(X)JOi=—(XIOi)°S,

Moreover,if F is a regular Lagrangiansystemin the senseof thepreviousdefini-
tion, then therelocally existsa functionL suchthat

(2.11) Oi=d(dL0S) and FIOi=—dEL,

with EL = S(F)(L) — L. The proofs of (2.10) and (2.11) essentiallyproceed

along the samelines as thosegiven for the correspondingpropertiesin theframe-
work of ordinaryLagrangianmechanicsin [8] and [12], respectively.

2.4. Reductionof degenerateLagrangiansystems

Let L be a degenerateLagrangianon TQ for which the assumptions(Al), (A2)
and (A3) are satisfied.Supposefurthermorethat the dynamicalequation(2.2)
admits a second-orderequationsolution F. We now wish to investigateunder

what conditions the quotientspaceTQ/charOiL can be equippedwith an inte-
grable almost tangent structureand a suitable symplecticstructuresuch that
F projects onto a regular Lagrangiansystemwith respectto thesestructures,in
the senseof definition 2.4.

An immediateobservationis that under the given assumptionsthereexistsa

uniquesymplectic form c~on TQ/charOiL suchthat

(2.12) OiL=7r.~w

where 7r~: TQ .-÷ TQ/charOiL is the projection mapping.This is in fact a general

result for the reductionof presymplecticstructures(seee.g. [16], theorem25.2).
The next step in the reduction processconsistsof finding conditionsunder

which the canonicaltype (1.1) tensorfield S on TQ passesto the quotientsuch

that its projectionS definesan integrablealmosttangentstructureon TQ/charOiL

andsuch that the spacesIm (Sm) are Lagrangianwith respectto Criteria for
a generaltype (1,1) tensorfield to be projectableonto the leafspace of aninte-

grabledistribution,are givenby:

PROPOSITION2.3. Let V be an integrabledistribution on a manifoldMsuchthat
thefoliation definedby V is a fibration. A type(1,1) tensorfield R on M projects
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onto the quotientspaceM/V iff
(i) R(V)CV

(ii) lm(~zR)CVforeachZEV.

Proof SeeAppendixA.

In the case we are dealing with here we already known that S(charOiL) C

C char OiL, i.e. condition (i) of the previous proposition is satisfied.Hence,we
immediatelyobtain

COROLLARY. Spassesto the quotientunderchar OiL iff

(2.13) Im(CZS)CcharOiL foreach ZEcharwL. U

We now arrive at the following importantresult (with ~‘ always denotingthe

symplecticform on TQ/charOiL for which (2.12) holds).

PROPOSITION2.4. If S passesto the quotientundercharOiL. then the projected

tensor field S defines an integrable almost tangent structure if and only if L is

of type II. Moreover, in that case the subspacesIm ~
5m~ are Lagrangian with

respectto ~ for eachm E TQ/charOiL.

Proof If S is projectable,with projection5, thenN~= 0 impliesN,~= 0.

This follows from the fact that if a type (1,1) tensorfield is projectableunder

a surjective submersion7r, then the Nijenhuistensorsof the given and of the

projected tensor field are ir-related (see e.g. [17]). Clearly, ~2 = 0 also implies
= 0 and so we already have Im ~5m~ C Ker ~ for eachm E TQ/charOiL.

For S to be an integrable almost tangent structure themissingbit is the opposite

inclusion, namely Ker C Im
First, supposeL is of type II. Let ~EKer(Sm) and take yEirj1{m} and

~E T~,(TQ)such that (7rL)~(~)= ~. Using the definition of S we find that

(~L)*(S~(E))= = 0, whenceS~(E)E V~,(charOiL). From lemma 2.1 it then
follows that ~ = s~+ S~,(~)for some~ E char OiL and ~‘ E T~,(TQ).Consequently,

~‘ *y~’~ = ~m~’~’ with ~= (~L)*(~)’ and thusEE Im
Conversely,supposeKer(Sm)C Im ~ for eachm. We shall then prove that

V(charOiL) C S(charOiL) which, in view of (2.5) and lemma 2.1, yields that L
is of type II.

Take ~ EI~(charOiL). We then have that ~ = S~(ii) for some 17 E 7~,(TQ).

Putting m = 7rL(y) and ij = (7TL)*(17) one can easily see that ~6 Ker ~ and

thus, by assumption,~ 6 Im ~ Herewith, it is straightforwardto verify that
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there exists a 6 charOiL fl T,,(TQ) such that S~(n1)= S~(ri)= ~ and,hence,

~E S~(charOiL). This completesthe proofof the first partof thetheorem.
In order to provethe secondassertion,let ~6 Tm(TQ/charOiL) and takeagain

yE 7r~
1{m)and ~6 T,,(TQ) such that (1rL)*(~)= ~. The following relationsare

easilyverified

S~(~)J(OiL)y = ~ 1 Wpj) 0

and

(~J(wL)y)oSy= ~

which, by virtue of (2.1) and the fact that is a surjectivesubmersion,yield

1~m)05m 5mW1~m’

Taking into account that, S being an integrablealmost tangentstructure,we

already have that dim Elm ~ = ‘~‘ dim ETm(TQ/charOiL)], the previous

relation indeed implies that Im ~5m~ is a Lagrangian subspace of
Tm(TQ/char OiL).

The above proposition already limits the classof Lagrangiansfor which the

proposedreductionschememight work to thoseLagrangianswhich are of type
II. Before continuing the reduction analysis for type II Lagrangianswe first

mentiona few generalproperties,alwaysassumingwe are dealingwith a degene-

rateLagrangianfor which (Al), (A2) and(A3) hold.

LEMMA 2.2. Each vectorfield X satisfying X I OiL = — dEL is projectableunder

char OiL. U

LEMMA 2.3. Theenergyfunction EL is projectableunder charOiL. •

The proofs of thesetwo lemmasare straightforward.Lemma 2.2 is in fact a

particular caseof the following moregeneralresult: if X is any locally Hamilto-
nian vector field with respect to OiL, i.e. £XWL = 0, then [X. Z] E charOiL

for eachZ 6 charOiL and, hence,Xis projectable.

Finally, let us have a look at the projectability condition for the Poincaré-

-Cartan form °L’ By definition of charOiL we already know that for eachZ 6
6 charOiL. Z I dOL = 0. The necessaryand sufficient condition for projectabi-
lity of thereforeis that for eachZ E char OiL



366 F. CANTRIJN, J.F. CARIF~ENA,M. CRAMPIN, L.A. IBORT

(Z, °L>= 0,

or, equivalently,since0L = dLo S.

(2.14) S(Z)(L)=0.

Clearly, projectability of °L neednot imply projectability of L. However, the

converseis true. Indeed,if L is projectablethenin particular,taking into account
(2.5), (2.14) holds and so is projectable.If both S and L are projectableone

immediately obtainsthat 0L projectsonto °L = dL o

We now turn our attentionto Lagrangiansof type II.

2.5. Reductionof typeII Lagrangians

Throughout this subsectionwe will be dealing with Lagrangiansof type II

for which it will alwaysbeassumedthat (Al), (A2) and (A3) hold. Before discus-

sing the reductionproblem we first mention the following interestingproperty.

PROPOSITION2.5. If L is a Lagrangian of type II then the leavesof charOiL

possessan integrablealmost tangentstructure.

Proof Since, according to (2.5), S leaveschar OiL invariant,one can consider

the restriction S of S to each leaf. The propertiesKer (5) = Im (5) and N~=0

can then easily be deducedfrom the correspondingpropertiesof S. taking ac-
count of the fact that for type II LagrangiansS(charOiL) = V(charOiL) (cf.
lemma 2.1). Consequently,the restriction of S defines an integrabie almost

tangentstructureon eachleaf. U

We havealreadyseenthat a specialclassof type II Lagrangiansconsistsof those

for which char OiL is a tangentdistribution (cf. definition 2.2). It turns out that

for suchLagrangiansthe tensorfield S is alwaysprojectableunderchar OiL.

PROPOSITION2.6. If charOiL is a tangent distribution, then S projects onto

TQ/charOiL.

Proof According to the corollary of proposition 2.3 we only need to prove

(2.13), i.e. ImcC~S)C charOiL for eachZE char OiL. Since char OiL is a tangent

distribution it admits a local basis of the form X~ X~.X~,. . . , X~for
some vector fields X. on Q, andso it suffices to prove (2.13) for vector fields
of theform fXf andfX,U withfa smoothfunction on TQ.

First, observethat for any function f and any vector field Z on TQ we have

£fzS=fCZS+S(Z)ndf—Z®(dfoS),
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as can be easily verified. Applying this to the casewhere Z = X,c and Z = X,’~

for some generatingvector field X, of char OiL and taking accountof (2.8) we
find, respectively

= X,’~ndf—Xf®(dfoS)

and

£~Svrr—X~®(dfoS).

Since both X,~’and X,” belong to charOiL it follows that Im ~~fxc5) C char OiL

andIm ~fX,’~ C char OiL.

It can in fact be shown that the only type II Lagrangiansfor whichS is pro-

jectable are those for which charOiL is a tangent distribution. This is a con-

sequenceof the following generaltheorem.

THEOREM 2.2. Let ~ bea distribution on TQsuchthat

(i) dim[V(TQ)fl~]= dimV,

(ii) S(V)C V

(iii) Im (.C~S)C ~for all Z 6 V(TQ) fl V,

(iv) there is a second-orderequation field F on TQ such that [F, Z] 6 V

foralIZE V.
Then there is a distribution V on Q of which ~ is the tangent distribution.

If V is integrable,soisV.

Proof SeeAppendix B. •

From theorem2.1 we known that a type II Lagrangianwhich admitsa global

dynamics will have a second-orderequation solution. For such a Lagrangian
all conditions of theorem2.2 are verified with ~ = char OiL, exceptcondition
(iii). If the latter is also satisfiedand thus,in particular, if S is projectable,then

the theoremtells us that char OiL is a tangentdistribution.Combining this with

the argumentof proposition2.4 it follows that the only possiblecandidatesfor
admittinga regular Lagrangianreduction,in the sensedescribedin the beginning

of the previous section,are those Lagrangiansfor which char OiL is a tangent
distribution.The next theoremnow statesthat for suchLagrangiansthe proposed
reductionschemeeffectively works.

THEOREM 2.3. Let L be a Lagrangianfor whichchar OiL is a tangentdistribution
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and such that (Al), (A2) and (A3) hold. Then, L inducesa regular Lagrangian

systemon the quotient spaceTQ/charOiL.

Proof Combining the results from propositions2.4 and 2.6 we alreadyknow
that TQ/charOiL inherits an integrablealmost tangentstructureS and a symplec-

tic structure~3with the property that Im (5) defines a Lagrangian distribution

with respectto ~.

Now, let F be a second-orderequationsolution of the dynamicalequation

(2.2) correspondingto L (and, by virtue of theorem 2.1, such a F certainly
exists). It follows from lemma 2.2 that F is projectable.The projected vector

field which, asa matterof fact, is the samefor any solution of(2.2),is denoted
by F. Takinginto accountlemma2.3 we find that

Fj~i= —dEL,

with EL the projectionof EL. In particularthis implies that = 0. According

to definition 2.4 it only remainsto be verified that r satisfies the conditions

(2.9), i.e., C1,,S0S=Sand So.C~~S=—S. For that purposewe first prove that
thetensorfield £~Spassesto the quotientunderchar OiL.

In view of (2.5) and the projectability of F, andusingthe identity (C1S)(Z)=
= [F, S(Z)] —S([F, Z]) it immediately follows that £rS(charOiL) C charOiL.

Next, for any Z 6 charOiL andany vectorfield X on TQ we have

[Cz(CrS)](X) = lz,rl
5’~’~— £rECzS(X)]+ £~S(EF,X]).

Taking into account(2.13) and the fact that F is projectable,if is seenthat each
term on the right-hand side belongsto charOiL. Consequently,Im [C~(.C~S)] C

C charOiL for each Z 6 charOiL and so the conditions of proposition 2.3 are

verified with R = CrS and V = char OiL. The tensorfield £~Sis thusprojectable

and,clearly, its projectionis precisely£?S.The relations(2.9) are now an imme-

diate consequenceof the correspondingpropertiesof the second-orderequation
field F (cf. section2.3). This completesthe proofof the theorem.

We may thusconcludethat Lagrangiansfor which charOiL is a tangentdistri-

bution admit a regular Lagrangianreduction and,moreover,accordingto the
discussionprecedingtheorem2.3, they are also the only ones having this pro-

perty.

Remark. Under the conditions of theorem 2.3 we also have that the dilation

field A is projectable.Indeed,sinceA = S(F) we find that for eachZ 6 char OiL

[Z, i~]= (CzS)(F)+ S([Z, F]).
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In view of (2.5), (2.13) and the fact that F is projectable,it is clearthat [Z, A] 6

6 charOiL for each Z 6 char OiL and, hence,~ is projectable.Its projection

is,~=S(F).

Supposeagain the conditionsof theorem2.3 are satisfied.Let L1 be a (local)

Lagrangian for the projectedvectorfield F, in the sensedescribedat the end

of section 2.3, i.e. c~= d(dZ1 oS) and F I = — dEj where E1 = ~(i~)(Z1)—

—~ which, in view of the previousremark,can be rewritten asE~ = ~(L1) —

—Li. Putting L1 = 7r L1, the next proposition extablishesthe relationship

betweenthe(local) <<lifted>> LagrangianL1 and theoriginal LagrangianL.
First we notice that although strictly speakingthe function neednot be

globally defined on TQ/charOiL, we will systematicallyignore, for notational

convenience,any indication of restrictions on the domainsof functions and
forms.Thisshouldnotgive riseto any confusion,however.

We also recall that any 1 -form a on Q can be regardedin a naturalway as a

function on TQ, henceforthdenotedby a,with &(x) = (x, cs(rQ(X)))for XE TQ.

PROPOSITION2.7. L1 and L aregaugeequivalent,i.e., there existsa closed1-form

aon Q such thatL = L1 + c~(up to a constant).

Proof In the proof of proposition 2.5 we havealreadyobservedthat I’ I &~‘ =

= — dEL with EL the projectionof EL. On the otherhandwealso haveI’ I ~3=

= — dE~from which

(2.15) dEL=dEZ.

Furthermore,

OiL = 7tI~W= 7r;Ed(dL1oS)]. OiL

and,

lrZEz Z(~Ll)Ll)r1~(Ll)_LlEL,
1 1

which, combinedwith (2.15), yields dEL = dEL. This meansthat, in thetermino-

logy of [10], the LagrangiansL and L~are equivalent (i.e. they determine the
samedynamics) and geometricallyequivalent(i.e. OiL = OiL). Since by assump-

tion there exists a second-orderequationfield r for which F I OiL = — dEL, it

follows from [101(theorem2) thatL andL1 are gauge equivalent. •

Summarizingwe cansaythat underthe presentassumptionsL is alwayslocally
gaugeequivalent to a Lagrangianwhich projectsonto a regular Lagrangianfor
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the reducedsystem. Notice, however,that L itself need not be projectable.As

far as the projectability of L is concerned we have the following interesting

property.

PROPOSITION2.8. Let L be a Lagrangian which, in particular, is smoothon the
zero sectionof TQ and for which (Al), (A2) and (A3) hold. SupposecharOiL

is a tangentdistribution, then is projectableif andonly L is projectable.

Proof The fact that projectability of L implies projectability of has already

beenobservedat the end of theprevioussubsection.

Supposenow that is projectablesuchthat

(Z, OL> = 0, for all Z 6 charOiL.

Sincechar OiL is a tangentdistribution it sufficesto proveX’~(L)= 0 andXU(L) =

= 0 for any vector field X on Q whose completeand vertical lifts belong to

charOiL. Since XL~= S(X’~)we already know that projectability of 0L implies
XU(L) = 0 (see (2.14)). From lemma 2.3 we deducethat XC(EL) = 0 for XCE

6 char OiL. By definition of EL this implies

X’~(L~(L))= XC(L)

or, since[Xc, L~]= 0 for eachvectorfield X on Q (cf. [8]),

L~(Xc(L))=

which meansthat XC(L) is homogeneousof degree 1 in the velocities. SinceL

is smoothon the zero section of TQ. this in turn implies that X’~(L)mustbe
linearin the velocities,i.e.

X~’(L)=

for some 1-form ~ on Q. On the other hand, for Z 6 charOiL and (Z. 0L> = 0
wehavethat£ZOL = 0, or

d(Z(L))oS+ dL oJ~S=0.

PuttingZ = XC andtakingaccountof (2.8) we find

dNS=r~= 0.

Hence,~= 0 and thusXC(L) = 0, which completesthe proof.

If L is projectablethen its projectionof course yields a regular Lagrangian

for the reducedsystem.

We finally make the following observation.Let L be a Lagrangianfor which
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charOiL is the tangent distribution of a distribution V on Q. From proposition

2.2 we know that V is necessarilyintegrable.Supposethe foliation definedby

V is a fibration such that the leaf space QIV admits a manifold structure and

the projection ir : Q -+ QIV is a suijectivesubmersion.It is theneasily seenthat
TQ/charOiL can be canonicallyidentified with T(Q/V) and ~L = lr*. The projec-
tion of SundercharOiL thencoincideswith the standardalmosttangentstructure

on T(Q/V) and thereducedregularLagrangiansystemis a genuineEuler-Lagrange
vectorfield on a tangentbundle.This situation occurs for instancewhenthereis

a free and properaction of a Lie group G on Q suchthat charOiL is spannedby

the complete and vertical lifts of the infinetesimalgeneratorsof this action.We
will meetthis casein the next section.

3. DEGENERATE LAGRANGIANS AND THE REDUCTION OF
HAMILTONIAN SYSTEMS WITH SYMMETRIES

The aim of this section is to study the relationbetweenthe Dirac theoryof
constraintsand the reduction theory for degenerateLagrangiansystemsas des-

cribed in the previoussection. In particular we will reveala deeplink between

both points of view in a very nice situation, well-known from the study of the
reduction of dynamical systemswith symmetry and the momentummap (see

e.g. [3], [18], [19]).

3.1. Dirac’s theory of constraints and the Legendre map

Since the pioneeringwork by Dirac [1] and Bergmann[20] on constrained

systems,much has beenwritten on the subjectand thereis certainly no point
in trying to give a completesurveyof the relevantliterature.Fora comprehensive

review of the theory and further references, the readermay consult for instance
Hanson et al. [21] and Sundermeyer [221,whereaswe also would like to mention

the nice geometricaltreatmenton the dynamicsandsymmetriesof constrained
systemsby Marmo et a!. [23]. A generalgeometricalsettingfor the analysisof
constrained systems, which globalizes Dirac’s local treatment,has been accom-

plished by Gotay et al. [2], [5], [6]. They have developeda geometric constraint

algorithm which applies to Hamiltonian systemson generalpresymplecticma-

nifolds. We will briefly sketchan adaptedversionof this algorithmin the canoni-
cal picture.

Supposewe are given a LagrangianL on TQ for which OiL is presymplectic.

The associatedLegendremap will be denotedby FL, i.e. FL : TQ -+ T*Q is the

fiber derivativeof L which in naturalbundlecoordinatesreads

aL
FL(q,u)= q,— ,
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(with obviousshorthandnotation).L is regulariff FL is a local diffeomorphism

and L is called hyperregularif FL is a global diffeomorphism(see e.g. [19]). If
O~representsthe canonical (or Liouville) 1 -form on T*Q and &IQ = dOQ the

canonical symplectic form, then it can be shown that FL O~= 0J and thus
also

FL*&~Q=OiL

(seee.g. [5]). In fact, this is sometimesused as a definition for OiL. If L is dege-

nerate then Im (FL) will in general be a submanifold of T*Q on which
induces, by restriction, a presymplectic structure. An important observation

is that

(3.1) V(charOiL) = Ker(FL~).

This can be easily verified usingcoordinateexpressions,for instance.For brevity

we henceforthput

Im (FL) = M1, ~Q
1M

1 =

M1 is calledthe primary constraintsubmanifoldand any function on T*Q which

is constanton M1 is calleda primary constraint.
For the subsequentdevelopmentwe need the notion of almost regularity

of a Lagrangian,which was introducedin [5].

DEFINITION 3.1. A LagrangianL is called almostregularif the LegendremapFL
is a submersiononto its imageand the fibresFL’{FL(x)} are connected for each

xETQ.

For an almost regular Lagrangian it follows from (3.1) thatM1 can be identi-

fled with (i.e., is canonically diffeomorphic to) the leafspaceof the integrable

distribution definedby V(char OiL) on TQ. Moreover, it can then be shownthat
the energy function EL is FL-projectable,i.e., thereexistsa smooth functionH1

onM1 suchthat

(3.2) H10FL=EL

(cf. [5]). In this way the given almostregularLagrangianL inducesa Hamiltonian
systemon the presymplecticmanifold (M1, &2~)with dynamical equation

(3.3) Y I ~ = — dH1.

The solvability of this equationcan then be studiedby meansof the geometric
constraint algorithm, which locally correspondsto the Dirac theory of con-

straints. The condition for there to exist a solution of (3.3) on M1 is that at
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eachpoint m EM1

(3.4) (~,dH~(m))=0,forall ~ETmM~~

where TmM~is the f11-orthogonal complementof TmM1, i.e., TmM~={~E

6 TmMil(~2i)m(~,77) = 0 for all 776 TmM1}.
Notethat U 7’ M~= char£2~,the characteristicdistribution of ~

mEM1 m

Let j1 :M1 -÷ T*Q denote the natural inclusion and let FL1 : TQ -+M1 be the
mapinducedby FL suchthat the diagram

TQ FL

commutes. For an almost regular Lagrangian one can prove that, in a pointwise

sense,

(3.5) (FL1)~(charOiL) = char

(cf. [5], p. 139).
Returning to the equation (3.3) it is to be noticed that the solvability con-

ditions (3.4) in generalwill not be satisfied.The constraintalgorithm thengene-
rates a sequenceof sumbanifolds. . . -+ M1 -+.. . -+ M~-, M1 which are defined
by

M1={mEM11I(~,dH1(m)>=0 foral! ~ETmMi~i}

where

TmMi~i={~ETmMiI(~2i)m(~,?7)=0forall flETmMj_i}~

The submanifoldsM2, M3, . . . are called secondary,tertiary, ... constraint

submanifolds.The sequenceeventually terminatesat some final constraintsub-

manifold M. If M ~ ~, then the equation (Y I ~ + dH1) IM = 0 possessesat

leastoneconsistentsolution.For details,see[2] and [5].
In terms of this constraint algorithm it hasbeendemonstratedin [5] that for

almost regular Lagrangiansthe Lagrangian description of the system always
admits an equivalent Hamiltonian description. A special instanceof this equi-
valenceresultis given by the following proposition.

PROPOSITION3.1. An almost regular Lagrangian admits a global dynamics(in
thesenseofdefinition 2.2) if andonly if thereareonly primary constraints.

Proof If there are only primary constraints,i.e. if the constraint algorithm
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terminatesat M1, then the equation (3.3) admits a solution. Any such solution

can then be lifted by the submersionFL1 to a vector field on TQ which will

satisfy the dynamical equationXI OiL = — dEL (cf. [5]). Conversely,suppose

L admitsa global dynamics.Thenfor any ~6 char OiL,

(3.6) (~,dE~(r~(~)))= 0.

Take m EM1 and x EFLj’~m}.According to (3.5), for any ~6 TmMI~(= char

&71 I{m}) thereexistsa ~6 char OiL with rQ~(~)= x andsuchthat

(FL1)~(~)=

In view of(3.2)and (3.6) we thenobtain

0 = (~,dEL(x)) = (~,[FL~(dH1)](x)> =

= ((FL1)~~,dH1(m)> =

= (~,dH~(m)>.

Hence, the conditions (3.4) are satisfied and so there are no secondarycon-
straints.

Assuming the foliation defined by char on M1 is a fibration we have a
symplectic reduction of (M1, &2~),i.e., the quotient spaceM~char~ admits

a manifold structureand thereexistsa uniquesymplecticform ~2on M1/char~

for which

=

with 7r1 :M1-÷M1/char&Z~ the natural projection (cf. [16], theorem25.2). In
case there are no secondary constraints, the function H1 is ir1-projectable with

projection H1 and any solution of (3.3) projectsonto the Hamiltonian vector

field Y which satisfies

YI&2 = —dH1.

Thepurposeof thesubsequentanalysiscannow beformulatedas follows.

Supposewe are given an almost regular Lagrangian L on TQ which satisfies
the conditions of theorem2.3. such that thereexistsa reducedregular Lagran-

gian description on TQ/charOiL. What is then the relation betweenthis reduced
Lagrangian system and the reducedHamiltonian systemobtained via the con-

straint algorithm.

Before dealing with this problem we will first describea generalproperty of

almost regular type II Lagrangians.(In the sequel, it will again always be tacitly
assumedthat the Lagrangiansunderconsiderationsatisfy (Al), (A2) and (A3)
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from section2.1).

Let us now fix somenotation. The orthogonal(or symplectic)complementof
TmMi~regardedas a subspaceof Tm(T*Q)~with respectto the canonicalsym-

plectic form will be denotedby TmMt. We havetherelation

(3.7) TmMit = TmMt fl TM1,

where, as above, TmM~standsfor the orthogonalcomplementof TmM1 with

respectto ~ ( ~Q IM~) Moreover,

(3.8) dim (TMt) + dim (TmMi) = 2n

where n = dim Q (see e.g. [19]). By definition, M1 is a coisotropicsubmanifold
of 7’*Q if TmMt C TmMi for eachm EM1 which, in view of (3.7), is equivalent

to

TmMt= TmM~•

We now havethe followingimportantresult:

PROPOSITION3.2. If L is an almost regular typeII LagrangianthenM1 is a coiso-
tropic submanifoldof T*Q and the Legendremap inducesa local symplecto-
morphismbetween(TQ/charOiL, &S) and (M1/char~ ~2).

Proof The proof that M1 is coisotropic is mainly a matterof countingdimen-

sions.We alreadynoticedbeforethat for an almostregularLagrangiantheprimary

constraint submanifold M1 is diffeomorphic to TQ/V(charOiL), from which

we deduce that dim [V(char OiL)I + dim (M1) = dim (TQ) = 2n. Combining

this with (3.8) we find

(3.9) dim[V(charOiL)]=dim(TmMt)

for any m EM1. SinceFL is a submersiononto its imageso is FL1 and, obviously,

Ker(FL~)= Ker(FL1~).Using (3.1) and (3.5) the following dimensionalrela-
tion is theneasilyverified:

(3.10) dim (charOiL) = dim (TmM~)+ dim [V(char OiL)].

By definition of a type II Lagrangian, dim (charOiL) = 2 dim F V(char WL)l
and so it follows from (3.9) and (3.10) that dim (TmM~)= dim (7~Mt)whichin

view of (3.7) implies TmM~= TmMt. Sincethis is true for anym EM1, M1 is coi-

sotropic.To prove the secondassertionwe observethat sinceFL1 mapschar OiL

ontochar ~ (cf. (3.5)), it inducesa map.! : TQ/charOiL —* M1/char~ suchthat

lrloFLl=FL07rL.
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Wethenhave

7r~’(1~L*~)= FL~’Or~’?~)=

=FL~(&2
1)=

= OiL

from which it follows that FL* f2 = ~, and this completesthe proof.

Remarks

1. It is interesting to observe that the converseof the first assertionof this
propositionis alsotrue,namely:if for an almostregularLagrangianL the primary
constraint submanifold M1 is coisotropic,then L is of type II. The proof follows

immediatelyfrom (3.9) and(3.10).
2. The situation described in the previous proposition can be summarized

by the following commutativediagram

FL

(TQ,OiL) >(T*Q~)

(M1M~)

____ I
(TQ/charOiL. ~) .~.. (M1/char~ fl).

In the next section we will specializethis picture to the casewhere the given

system admits a regular Lagrangian reduction, thereby elucidating the nature

of the inducedmapFL.

3.2. Invariant L.agrangians for which char OiL is a tangent distribution

Let L be a degenerate Lagrangian for which charOiL is the tangentdistribution
of an integrabledistribution V on Q and assumethat the foliation defined by V

is a fibration. From the analysis in section2.5 we then know that on the leaf
spaceof char OiL, which can here be identified with T(Q/V), thereexists a re-
duced regular Lagrangiansystem. Moreover, if L is 7r~-projectable,i.e., if L is

invariant underchar OiL, then its projection L defines a regular Lagrangian for

the reduced system.

According to proposition 2.8, L will be invariant undercharOiL if and only

if is projectableand the latter in turn is equivalentwith XU(L) = 0 for each
XE V (cf. (2.14)). It will be seenthat this invariance condition hasimportant
consequencesfor the structureof the Legendremap FL.

Before proceeding we first recall that to each vector field X on Q one can
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associate a Hamiltonian vector field on T*Q which projectsontoX and leaves
the canonical 1-form O~invariant. This lifted vector field, which is uniquely

defined, is called the complete or Hamiltonian lift of X to T*Q and will be

denoted by X~’.In coordinates,if X = X’ a/aq’ then,with respect to the cano-
nical coordinateson T*Q the expressionfor Xt* is

a ax’ a
XC* = — — p. — —

aq’ ‘ aq1 ap
1

LEMMA 3.1. Let L be a degenerateLagrangianfor which char OiL is the tangent
distribution of a distribution V on Q and suppose XV(L) = 0 for each XE V.

Then, the completeand the Hamiltonian lifts X~’and XC* of a vector field X

in V are FL-related, i.e.

FL~oX~rXC* oFL.

Proof. The proof can be most easily establishedby meansof a simplecoordinate

calculation. RepresentingX by X’ a!aq’ we haveXC= x
1 a/aqt + v’(aX’/aq’)

(a/av1)andX~’= x a/a~1—p
1(aX

1/aq1)(a/ap
1).

If X belongs to V thenXCEchar OiL, i.e. X”IOiL = 0. Using the localexpres-
sion (2.3b) for OiL this leadsto

a
2L

x/ . . =0
av’ av’

and

a2L a2L ax” a2~
(3.11) X’ . . — . . +v1 —~ . =0

av1 aq’ ad aq’ aq’ av” av’

for i = 1, 2 n (= dim Q). For a fixed point (q, v) of TQ we computethe
image of the vector Xc(q,u) underFL~.With a slight abuseof notation we
obtain

a a2~ axk a2~ a
FL~(XC(q,v)) = x’(q) + x’ . . + vi . (q, v) —

aq’ aq’ av’ aq’ av” avt ap,

which in view of(3.l 1) reducesto

a a2~ a
(3.12) FL~(XC(q,v))=xl(q) —~ +X’(q) . . (q,v) —.

aq’ a& aq’ ap,

The right-hand side here represents a tangent vector to T*Q at the point
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FL(q, v) = q, — (q. v)
av

By assumptionXV(L)= 0, i.e. x’ aL/au’ = 0. Taking this into account,(3.12)

becomes

a aL ax’ a
FL~(XC(q,v)) = x’(q) —- — (q. u) —- (q) —

aq’ av’ aq’ a,~

whichpreciselyequalsXC*(FL (q. u)). asrequired.

The annihilator of the distribution V is the subbundleof T*Q defined by

AnnV={aET*Q~(X(7rQ(a)),a)=0 forall XEV}

where ITQ : T*Q -* Q denotesthe cotangentbundle projection. The codimension

of Ann V is equalto the dimensionof V.

LEMMA 3.2. Let L be a degenerateLagrangianfor which charOiL is the tangent
distribution of V, then Im (FL) C Ann V if andonly if X”(L) = Ofor eachXE V.

Proof. By definition of Ann V the condition Im (FL) C Ann V meansthat for

each point (q, v) in TQ and eachX 6 V.

(X(q), FL(q, u)> = 0.

In coordinates, with X = x’ — , this still reads
aq’

aL
x’(q) —~ (q, v) = 0,

a~.‘

which is preciselythe coordinateexpressionof XV(L)= 0. •

The two previous lemmas actually hold without having to impose the almost

regualrity condition on L. We now bring this condition into the picture again.
Char OiL being a tangent distribution, L is of type II and we therefore know

from proposition 3.2 that Im (FL) = M1 is a coisotropicsubmanifold of T*Q.

Moreover,we have

PROPOSITION3.3. Under the assumptionsof lemma3.1, with L almost regular,
is an open submanifoldof Ann V and the characteristicdistribution of ~

(= ~Q M1) is spannedby theHamiltonianlifts of the vectorfieldsin V.



REDUCTIONOFDEGENERATELAGRANGIANSYSTEMS 379

Proof. From lemma 3.2 we already know that M1 C Ann V. For M1 to be an

open submanifold of Ann V it thereforeremainsto be verified that both spaces
have the same dimension.Since codim (M1) = dim (Ker (FL~))and taking into

account that Ker (FL~)= V(charOiL), it readily follows that dim (0) = codim
(M1). On the other hand, dim (0) = codim (Ann 0) whence dim (Ann V) =

= dim (M1).

To prove the secondassertionwe first observethat FL~(charOiL) definesa

distribution on M1 which, accordingto (3.5), is preciselythe characteristicdistri-

bution of ~ Again usingthe fact that Ker (FL~)= V(char OiL) one theneasily
deducesfrom lemma 3.1 that FL~(charOiL) is spannedby the restrictionstoM1
of thelifts Xc* of thevectorfieldsXE V.

The Hamiltonian lifts of the vector fields in V definea distribution on T*Q
which we will denote by ~ Integrability of V~*follows from integrability
of V in view of the property [X~’*, YC*] = [X, ~]C* which holds for any two

vector fields X, Y on Q.

Next, we notice that onecan associativewith the given distribution V a <<mo-

mentum map>> J which. at least in a formal way, can be defined as the rule

which assignsto each point aE T*Q a JR-linear function J(a) on V suchthat

J(a)(X) = (X(lrQ(a)). a), for X E V.

For eachXE 0, the correspondingfunction~x : T*Q -+ IR, a~Jx(a) = J(a)(X)

is the Hamiltonianof the lifted vectorfield X~’. is also calledthemomentum
correspondingto X (cf. [19],section4.2).

Clearly, the zero-level set of this <<momentummap>> is precisely the annihi-
lator of the distribution V, i.e. Ann V =J’{O}. Proposition3.3 now tells us

that, under the given assumptions,FL maps TQ onto an open submanifold
of J’~0}and, moreover, V’~’restricts to an integrabledistribution on

namely,char~ One can then prove that the reducedphasespace(M1/char~

~) is symplectomorphicto an open submanifold of (T*(Q/V), FLQ,I-~ where

EQ/V is the canonicalsymplectic form on T*(Q/V). (For a proof onecanproceed

along the same lines as in [19], theorem4.3.3, which dealswith Hamiltonian
actionsof a Lie groupon a cotangentbundle).

On the otherhandwe know that, in thecaseunderconsideration,TQ/charOiL

T(Q/V), and taking into accountthe assumedinvarianceof L underchar OiL,

it follows that the inducedsymplectic form i25 canbe identified with the Poin-

caré-Cartan2-form Oi1= dOL of the regularprojectedLagrangiani~.
Returing to proposition 3.2 and bearing in mind the aboveidentifications,

it can now easily be shown that the local symplectomorphismFL coincides
with the LegendremapFL correspondingto L. To be more precise,we actually
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haveFZ =ToFL, with /the symplecticembeddingofM1/char&~1into T*(Q/V).
We cansummarizethe situationin the following commutativediagram:

(TQ,OiL) FL ~ (T*Q,&~Q)

(M~M~)

1~1
(M1/charcz1,?~)

(TQ/charOiL, ~) (T(Q/V), Oiy) FZ (T*(Q/V) ~Q/V~

In the previous subsectionwe haveseenthat the constraintalgorithm produces
a Hamiltonian system Y on the reduced phasespaceM1/char~ with Hamilto-

nian H1, whereH1 o = H1 and H1 o FL = EL. Through the symplecticembed-
ding / this can still beidentifiedwith a Hamiltoniansystemon (an opensubmani-

fold of ) T*(Q/V) for which, for simplicity, we retain the samenotation. By
meansof the abovecommutativeschemeone theneasily deducesthat ° FL =

= E~.Since,moreover,FL*&
2Q/V = OiL, it follows that the reducedLagrangian

system F and the reduced Hamiltonian system Y, associatedwith the given

degenerateLagrangianL, areFL-related,i.e.

F1~~= YoFZ.

Herewith we have proven the following result which completesthe reduction

picture in the caseof a degenerateLagrangianwhich is invariantunderchar OiL,

with char OiL a tangentdistribution.

THEOREM3.1. Let L be an almost regular Lagrangianfor which charOiL is the
tangent distribution of a distribution V and suppose XV(L) = 0 for eachX E V.

Then, the reduced regular Lagrangian systemis locally symplectomorphicto the
Hamiltonian system which, according to Dirac’s theory of constraints, is induced
on the reduced phase space. Such a local symplectomorphismis provided by
the Legendre map FL : T(Q/V) —* T*(Q/V) corresponding to the regular project-
edLagrangianL.
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3.3. The reduction of Hamiltonian systemswith symmetry

The reduction procedureof Marsdenand Weinsteinprovidesa very nicedes-

cription of the reduction of dynamicalsystemswith symmetry on a symplectic

manifold ([3], [18]).Let usbriefly recall how the method works.
Let G be a connectedLie groupwhich actssmoothlyon a connectedmanifold

Q. The lifted action of G on T*Q is a Hamiltonian action with an Ad*~equi~

variant momentummap J : T*Q ..+ g*, where g’~is the dual of the Lie algebrag
of G. For agiven elementa of T*Q,J(a) is definedby

J(a)(a) = ((X)~~*, OQ> (a) =

= (Xa(lrQ(a)),a),

for each a E g, where Xa is the infinitesimal generatorof the actionof G on Q

correspondingto a.

For p E g1~ we denoteby G~the isotropy groupof p underthe co-adjoint
action Ad* of G on 9*. For eachregularvaluep off the subgroupG,~of G acts
on the submanifoldJ~{p}of T*Q and one canconstructthe orbit spaceF~=
=J~{~}/G~with projection lrp :J~{p}—~.F,.L. Assuming the action of G,, on

J ~{p } is free and proper, FM can be equippedwith a manifold structureand
thereexistsa unique symplectic form ~ on FM suchthat ir*fl = J~ZQ,where

‘M :J’{.t}-+ T*Q is the inclusion. The symplectic manifold (F~,~ is called
the reducedphasespacecorrespondingto p.

Considernow a Hamiltonian systemon T*Q with HamiltonianH andsuppose
H is invariantunderthe action of G on T*Q. Thenthereexistsa reducedHamil-
tonian systemon F,~with Hamiltonian HM such that 1r~HM= jH. (For more
details, seealso forinstance[16], [19] and [24]).

If in the precedingwe take p = 0 then GM = G and it follows from the theory
of the momentummap that the zero-levelset J’{O }= Ann g. whereAnn g is
a shorthandnotation for the annihilatorof the distribution definedby the orbits
of G on Q. The resulting picture is now strongly reminiscentof the onewe have

met in the previous subsectionwhen dealing with the reductionof a special

classof degenerateLagrangians.
In fact, we will showthat theorem3.1 establishesa link betweenthereduction

schemedevelopedabovefor degenerateLagrangianson the one hand, and the

Marsden-Weinsteinreduction (with respect to the zero regular value of the
momentummap)on the otherhand.Alternatively, it canalsobesaidthat theorem
3.1 provides us with an interpretationof Hamiltonian systemswith symmetry
in terms of degenerateLagrangians.This will in particular be illustrated in the

caseof systemsof mechanicaltype (i.e. systemswith a Hamiltonian of the form
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kinetic plus potentialenergy).
For simplicity, the Lie algebraof the infinitesimal generatorsof the action

of G on the basemanifold Q will also be denotedby ~. Fora free action, this
algebrais in fact (anti-) isomorphicto the Lie algebraof G. Thetangentdistribu-

tion of 9 is then the distribution on TQ spannedby its tangentalgebraTg. i.e.,

the algebradefinedby the completeandvertical lifts of elementsof g (cf. section

2.2).
The following proposition already indicates the link betweenthe Marsden-

-Weinstein reduction procedure and the reduction induced by a degenerate
Lagrangian.

PROPOSITION3.4. Let G be a Lie group which acts freely and properly on a

connectedmanifold Q. Then there exists a degenerateLagrangian L on TQ
such thatchar OiL is precisely thetangentdistribution ofg. Moreover, thereduced

phasespacecorrespondingto the zero regular value of the momentummap of
the lifted action of G on T*Q is symplectomorphicto the leafspaceTQ/charOiL.

Proof Since G actsfreely and properlyon Q. the leafspaceQ/G admitsa mani-

fold structure. Let ~ be a nondegeneratemetric on Q/G and define g as the

pull-backof ~ underthe projectionof Q ontoQ/G.Theng is a degeneratemetric

on Q and we denoteits null distribution by N (i.e. N is spannedby the vector

fields X on Q satisfyingg(X,.) = 0).
Let L be the kinetic energy Lagrangiancorrespondingtog, i.e., in coordinates:

L(q, v) = -~.. gq(v, v). This type of Lagrangian,defined in terms of a degenerate

metric, will bediscussedin detail in the nextsection.
By construction of g its null distribution is spannedby 9 and consistsof

Killing vector fields. From the analysis in section4.2 it then follows that N is

integrableandcharOiL is its tangentdistribution.
The remainderof the proof is now a straightforwardapplicationof theorem

3.1. In particular, we notice that in the presentcase Im (FL) = J ‘{O}, with
J themomentummapof theactionof G on T*Q. ThereducedregularLagrangian
L which is here the kinetic energy correspondingto the given nondegenerate

metric ~ on Q/G, is hyperregularand thereforeinducesa symplectomorphism
between (T(Q/G), Oiz) and (T*(Q/G), ~Q/G~~ Finally, it can also be shown
that the reducedphasespace(J’{O}/G, ~ is symplectomorphicto (T*(Q/G),

~Q/G~’ (this follows for instancefrom [19], theorem4.3.3). •

Before continuingwe first mentionthe following interestingproperty:



REDUCTIONOF DEGENERATELAGRANGIANSYSTEMS 383

LEMMA 3.3. Let L be a Lagrangian which is invariant under the tangentdistribu-

tion of a distribution V on Q, i.e. X11(L) = XC(L) = 0 for eachXE V. Then, L
is degenerateand char OiL containsthe tangentdistributionofV.

Proof Since £~S= £~S= 0 and taking into accountthe assumedinvariance

of L it follows that foreachXE V

£~O,=£(dL oS) 0

and

£ 0 =C (dLoS)=0.

1uL x°

Hence,

0 = XCIOiL + d(X’~IO1,)= XCIOiL + dXL~(L)= XCIWL

and

O=X’~IOiL+d(XuIOL)=XL~IOiL,

which proves that char OiL contains the complete and vertical lifts of vector

fieldsinV. U

We now turn our attention to simple mechanicalsystemswith symmetry.

A detailedanalysis of thesesystemscan be found for instancein [19], section

4.5. Recall that a simple mechanicalsystemwith symmetrymaybe characterized
by a quadruple(Q, g, V. G) where: Q is a (connected)Riemannianmanifold
with Riemannianmetric g, which determinesthe kinetic energyof the system;
V is a smooth function on Q representingthe potential energyof the system

and G is a connectedLie groupacting on Q suchthat bothg andV areinvariant
underthisaction.The Hamiltonianof the systemthen reads

H=K+Vo~Q

whereK is (the phasespaceexpressionof) the kinetic energy,i.e., for aE TQ
K(a) = g~(a#,a#) with a#E TmQ the inverseimage of a under the isomor-

phism~ : Tm Q ~+ TQ. v -+ g~(v, .). Underthe given assumptionsH is invariant
underthe lifted action of G on T*Q and thusonecanapply the Marsden-Weins-

tein procedurefor constructinga reducedHamiltoniansystem.

In particular, we are interestedhere in the reducedsystemcorrespondingto
the zero regular value of the momentummap J of the action of G on T*Q. As
before,the actionof G on Q is assumedto be free andproper.

We thenhave:
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THEOREM 3.2. There exists a degenerateLagrangian L’ on TQ such that: (i)

charOiL is the tangent distribution of g; (ii) L’ admits a regular Lagrangian
reduction which is symplectomorphicto the reducedHamiltoniansystemcorres-
pondingto thezero regular valueof the momentummap.

Proof Under the given assumptions,the Riemannianmetric g and the poten-

tial energy function V bothpassto the quotientQ/G, with projectionsdenoted
by ~ and V respectively. In particular,~ is a Riemannianmetric on Q/G such

that theprojectionir : Q -+ Q/G becomesa Riemanniansubmersion.

On T(Q/G) we considerthe Lagrangian Z~= K — V o TQJG~where K stands
for the kinetic energy function associatedwith ~. L is hyperregularand Oi

1

is symplectic.Wenow definethe LagrangianL’ on TQ by

L’ = o 1r~.

Clearly, L’ is invariant under the tangent distribution of 9, i.e.,Xv(Ll) = X’~(L’) =

= 0 for each infinitesimalgeneratorX of the actionG on Q. Takinginto account

lemma 3.3 and the fact that OiL projects onto the symplectic form Oii, this
proves(i).

In orderto prove(ii) we first observethat Im FL’ = J ‘{O}. (Sincethe poten-
tial energy term in L’ has no effect on the Legendremap FL’, the situationis

similar to the one describedin proposition3.4). Moreover, it is easy to verify
that Ho FL’ = EL, with H the Hamiltonian of the given mechanicalsystem.
Theremainderof the proofthen follows from theorem3.1. U

4. EXAMPLESAND APPLICATIONS

In this sectionwe will studya few typical examplesof degenerateLagrangians,
usingthe formalism developedin the previoussections,and discusssome related
aspects.Special attention will be paid to Lagrangiansof ‘kinetic energy type’,

defined in terms of a degeneratemetric, and to the homogeneousdescription

of time-dependentLagrangiansystems.
Throughoutthis sectionwe will mainly usecoordinateexpressions.

4.1. Lagrangiansdefinedby a degeneratemetric

Let g be a symmetric type (0,2) tensor field on Q. For each m E Q we define

a subspaceNm of Tm Q by

Nm ={x E Tm Q g~(x,y)=0 forall ~E Tm Q}.

Supposethat dim Nm is not zero and is the same for all in E Q, and that the
bilinear form inducedby ~ on Tm ~‘~m is positive definite: then we call g a
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degeneratemetric on Q and N = U Nm its null distribution.
m EQ

It is known (see [25]) that the necessaryandsufficient condition for a dege-

neratemetric to admit a compatible symmetricconnection is that £~g= 0 for

all vector fields Z E N (i.e. for all smoothsectionsof N). Underthis condition

N is integrablein the senseof Frobenius’ theoremsince for any Y, Z E N and
any vectorfield X on Q

g([Y, Z], X) = Y(g(Z,X)) —g(Z, [Y, X]) = 0.

However,this integrabilitymay hold even thoughvectorfields in N do notsatis-

fy the <<isometry>>or <<Killing>> condition£~g= 0. Forexample,if g = G(q’)dq2 ®

® dq~on JR2 with G a positive function, then N is the 1 -dimensionaldistribution

spannedby a/aq’ and thusis certainlyintegrable,but £
1g ~ 0 unlessG is a

1/Iq
constant.

The condition that N be integrableis, despiteappearances,a purely tensorial

one. Indeed,if Y, Z E N then for any vector field X and any functionf on Q

g([Y,JZ], X) = g(f[Y, Z], X) +g(Y(f)Z,X) =

=fg([Y, Z],X).

This last observationis also easily verified in coordinates.SupposeY = t~’a/aq
1

andZ= ~‘ alaq’,thenfor Y,ZE N

(4.1) g,~~’=g,
1~’=0,

whereg11 are the componentsof g. The condition for integrabilityof N is that

for eachY, Z E N

a~’ a~
1

g
1. re” — ~ =0,

aqk aq”

which,using(4.1), mayberewritten as

ag,. ag1~ =0.
aq” aq’

The condition for Z = ~ alaq’ to bea Killing vectorfield, i.e. £~g= 0, in coordi-

natesis

aq”~ aq’ aq’

Considerthe LagrangianL defined in terms of a degeneratemetric g on Q by
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1 1
L(q,v)=—g(u,u)=—g1.(q)u

1v1.
21

We shall first examinethe conditionsunderwhich L is of type II. The expressions

(2.3a) and(2.3b) for 0L and OiL herebecome

ag.~
0L =g

11 v’ dq’, OiL =g11 du’ A dq’ + ~ u”dq’ A dq’.aq

A vectorfield Z = ~‘ a/aq’ + v’ a/au’belongsto charOiL iff

(4.2a) g11 ~‘ = 0,

ag,. ag~~
(4.2b) g..v

1=~1 .L. uk.
I’ ag” aq’

From this one can already deduce that, in any event, V(char OiL) is spanned

by the vertical lifts of vectorfields in N. In view of lemma 2.1 and taking account

of (2.5) it follows that L will be of type II if andonlyif V(charOiL) C S(charOiL),

which here meansthat (4.2b) must admit a solution for i-’~ for every choice of

~‘ satisfying (4.2a). Now, the necessaryand sufficient condition for (4.2b) to
admit a solution is that the right-handside gives zero whencontractedwith any
~‘ such that g~

1rj’= 0. Since this must hold for every u the condition is that

ag,. ag,~
~i~k ~ =o

aqk aq’

wheneverg~1”i’= = 0 and this is equivalent to demandingthat N be inte-

grable (see above). Summarizing,we have thus proved the following property:

PROPOSITION4.1. The kinetic energy Lagrangian correspondingto a degenerate
metric g is of typeII if andonly if the null distribution ofg is integrable. •

Assumingthat L is of type II we now ask what further condition is required
to ensurethe existenceof a global dynamics,that is, a vectorfield X on TQ satis-

fying X I OiL = — dEL. In the presentcasewe haveEL = L = g11 u’ v
1 andthus

1 ag.~ . .

dE~=g,.u1 du’ + — —i- u1 v”dq’.
/ 2aq’

If X = A’ alaq’ + p’ a/au’wethenrequirethat
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g/~A”~= g~uk

k ag,~ ag,1 1 ag,~g .~ p = — — — V A — — —~ u u
/ aq’ aqk 2 aq’

From the first of theseequationswe obtain ~ = u~’ + 11k wheregf~11” = 0. Then

the secondconditionbecomes
1 ag,~ ag,1 . ag,~ ag,1 .

g.~pk = — — u’ v + —- — — u’ ,~

2 aq’ aq” aq’ aqk

As before, the necessaryand sufficient condition for this equation to admit

a solution for p~’is that the contractionof the right-handside with any ~ for
which g11~

1= 0, gives zero. Bearing in mind the assumptionof the integrability

of N, for this to hold for all v we musthave

=~
aq’ aqk aq’

for every ~ satisfyingg.
1 ~‘ = 0. This is preciselythe conditionthat £~g= 0 for

all Z E N. Thus, if L is of type II in order for thereto be a global dynamicsit
must be the casethat all vectorfields in N are Killing vector fields. Conversely,

if that conditionholds, L is necessarilyof type II since N is integrable,andthere
is also a global dynamics. Incidentally, it follows from the abovecalculation

that the solution X of the dynamical equationmay then be chosento be a
second-orderequationfield, astheorypredicts(cf. theorem2.1).

If £~g= 0 for all Z E N, then using the ‘Killing’ condition, equation(4.2b)

may be rewritten as

= g1 ~T

from which r’~= v~’a~’/aq” + i~’, where g~1’q
1 = 0. Consequently,in this case

char OiL is spannedby the completeand vertical lifts of vector fields in N, i.e.

char OiL is the tangent distribution of N. It then follows from the theory that
we may carry out the reduction procedureand, provided the leaf space Q/N
has a manifold structure. the reduced Lagrangian will simply be the regular
Lagrangianon T(Q/N) definedby the nondegeneratemetric ~ on Q/N, obtained

by passinggto thequotient.
We pausehere for a momentto considerin generalthe effect on 0L of changing

the LagrangianL by a gaugeterm.
Let a be a closed 1 -form on Q and let & be thecorrespondingfunction induced
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on TQ. If L’ = L + &, then

0L = 0L + r~a,

and, since da = 0, ~ = OiL. For any vector field ZE charOiL = char OiL. we
thenhave

(Z, °L’> = (Z, 0L> + (Z, r~a).

So, even if L is a Lagrangianwhich does itself passto the quotient, the gauge
equivalent LagrangianI) need not necessarilysatisfy the condition (Z, 0L> = 0
for all Z E charOiL, necessaryfor to pass to the quotient. As an explicit

example:let L = -~- g(v, u), whereg is a degeneratemetric for which N consists

of Killing vector fields. Let a be a closed 1 -form on Q which doesnot vanish

on N; then L’ = g(v, u) + & is an illustration of the situation describedabove.

4.2. Application to thespinorregularizationof the Keplerproblem

An exampleof reduction associatedwith a degeneratemetric arisesin the

context of the spinor regularizationof the Kepler problem (see [26], [27], [28].

[29] for a generaltreatmentof this problem).
Considerthe complexspaceC2—{0}with coordinatesz= (z’), i = 1,2, where

z is to be regardedas a column vector.We will write ~‘ for thecomplexconjugate

of z’ and the real and imaginary parts of z’ are denotedby Re.z’ and Irn z~,
respectively.A metricon C2 —{0}is givenby

g~(u, v) = I z 2 Re.(u, u) — mi (z,u) mi (z,u).

whereu standsfor thereal tangentvectoru’ a/az’ +Ii~~/~Y1andshouldagainbe

regardedas a column vector(and u likewise); ( , ) standsfor the hermitian inner

product, i.e., (u, u)= utv =i~u1+~2v2(t indicating complexconjugatetrans-

pose)andlz 2 = (z, z).
Thismetricis degenerateandhasa one(real) dimensionalnullspaceN~,spanned

by iz, at each point z. The vector field iz is the infinitesimal generatorof the

action z -+ eltz of U(l) on C2 —{0} and g is clearly invariantunderthis action.

The Lagrangian L(z, v) = ~. g~(v,v) on T(C2 — {0}) is degenerate,as is any

Lagrangianobtainedby addingto it for examplea potentialfunction of theform

J7( Iz ).
We are here preciselyin a situationas theone describedin theprevioussubsec-

tion and, in particular, the Lagrangiansystemis reducibleunder the action of
U(l).
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In fact, the LagrangianL is simply obtainedfrom the usual kinetic energy

Lagrangianon T(E3 —{0}) (whereE3 is the 3-dimensionalEuclideanspacewith

thestandardmetric)by meansof the spinorcorrespondance.
Let

10 11 [0 —-ii [1 0
o=I I a=I I a=I

1 LI üi 2 Li 0] ~ LU —1

be the Paulimatrices.Considerthe map

~:C2—{0}~E3—{0}, z~_zt~z

where a is the <<3-vector>> ~ 02, 03). The elementsof C2—{0} are called

<<spinors>> and ~ is the spinor correspondance.It representsC2—{0} as a prin-
ciple fibre bundle over E3 —{0} with groupand fiber U(1), and the Lagrangian
L reducesto the standardkinetic energyLagrangianon T(E3 — {0}).

The cotangentbundle T*(C2_~0})has fibre coordinatesp = (p
1, p2) where

the p, are to be regardedas componentsof a row vector andrepresentthe real

covectorp, dz’ +~ dY’ The canonical1-form 0~on T*(C
2_{0}) has formally

the sameexpressionwhich we rewrite as pdz + ~dY (matrix multiplication of
a row by a column vectorbeing understood).The groupU(l) definesaHamilto-

nian action on T*(C2 — {0}) with momentum map J(z, p) = i(pz — ~2) =

= — 2 Thi (pz).

We show next that the Legendremap of the LagrangianL(z, u) = g~(v, u)

mapsT(C2 — {0}) onto the zero level set of thismomentummap.

TheLegendremap correspondingto L is given by

FL(z,v)= z, _(
1z12ut +iI~i (z,u)zt)

2

Denotingthe right-handside by (z, p) wehave

pz= — (Iz 1
2(v,z) +i m~(z,v)Iz 2) =

2

=~Izl2Re.<z~u)=~2

and thus J(FL(z, v)) = 0, which is in agreementwith lemma 3.2. Conversely,
suppose (z,p) EJ’{O } and put v = 2 Iz —2~t+ ikz for any real k, then
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FL(z, u) = (z, p)andso we haveproventhat mi FL =J’~O}.
Finally, it may be shownthat the map

~ :J~{O}~T*(E3_{O}), (z,p)~(~ztaz,2 Iz I_2Re.(P2z))

is a suijective fibre isomorphism.The pull-back E of the canonical I -form
on T*(E3 —{O}) is just the restriction of 00 to J~{O}and quotientingby

the action of U(l), which of courseleavesJ’{O} invariant,gives a symplecto-

morphismofJ~{U}/U(l)with T*(E3 —{O})~T*(C2 —{O}/U(l)).
The regularization space is obtained by restoring the origin in the spinor

space.

4.3. Time-dependentLagrangiansystems

Time-dependentLagrangiantheory is sometimesstudied in a homogeneous

formalism.
Suppose that L is a (possibly) time-dependentLagrangian, i.e. a function

on TQ x JR. which is nondegeneratein the sensethat the Cartan 1 -form 0L =

= L d t + aL/au1 (dq’ — u~dt) definesa contact structure on that odd-

-dimensionalmanifold. This also meansthat for each fixed t the Lagrangian
definedon TQ by L~(q, v) = L(q, v, t), is nondegenerate.

A correspondinghomogeneousLagrangianLis definedon T(Q x IR) by

L(q, t, U, w) = wL(q, v/w, t)

with (q’, t, v’, w) the naturalbundle coordinatesand where,strictly speaking,

the submanifoldw = U must be deletedfrom T(Q x IR). ThenL is homogeneous

of degree1 in the fibre coordinates.
We may describethis constructionmoregeometricallyas follows. Let M denote

the manifold T(Q x IR) with the zero set of w removed.Define a smoothmap

p :M-÷ TQ x IR, byp(q’, t, u~,w) = (q’, u’/w, t). Then

L = w(p*L).

Let S denote the almost tangent structuretensor field on T(Q x IR). Then for

any 1-form aon TQ x JR

(p*a)oS _p*(aoS)

w

whereS now denotesthetype (1, 1) tensorfield on TQ x JR given by
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a
S= —-n(dq’—u’dt).

au’

It follows that

0r dLoS= ((p*L)dw + w(p*dL)) oS

= (p*L)dt +p*(dL oS)=

= p0

Consequently,

OiT p*Oi (.... p*dO)

The dynamical vector field on TQ x JR. associatedwith the given LagrangianL,

is theuniquevector field r satisfying

FJWL=O, F(t)=l.

At each point x in M, p,~,is a surjectivemap of tangentspaces,whose kernel
is a 1 -dimensionalsubspaceof the vertical subspaceof T,M and is in fact the

subspacespannedby ~(x), where~ is thedilation field on T(Q x IR).
Thus on M, charOiT is 2-dimensional: it projectsunderp onto the 1 -dimen-

sionaldistribution spannedby F and its verticalpartis spannedby ~.

So, dim [char OiZ-] = 2 dim [V(char Oi-

1-)] and thus L is clearly of type II.
However, char Oir does not contain any vertical or any complete lift of any

vectorfield on Q x lR, as can be easily verified. Consequently,the homogeneous
LagrangianL is an example of a type II Lagrangianwhosecharacteristicdistri-
butionis not a tangentdistribution.Furthermore,we have

£YS= S,

and it is thereforenot_the case that Im (C~S)c charOiy for eachZ E charOiL

since the image of —Sis the whole vertical distribution of T(Q x IR). This is
in agreementwith the resultsof section 2.5 where it waspointed out that the

only type II LagrangiansL for which the almost tangentstructureis projectable
underchar OiL arethosefor which charOiL is a tangentdistribution.

On theother handit can be shown,however,that thehomogeneousLagrangian
L admits a global dynamics. Indeed sincethe homogeneityimplies that ~(L) =

= L, the energy EL is identically zero and since char OiL is not empty, there
certainly are solutions to the dynamicalequationXI OiT= — dE~.It follows

from the fact that L is of type II that we can chooseX to be a second-order

equationfield.
In this casethe degenerateLagrangiansystemis reduciblein a certain sense.
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although not in the sensethat is the main object of studyin this paper.Since
= w ~ U on M, we may ensureby subtractinga multiple of ~ if necessary,

that the chosensecond-orderequationfield in char OiL, sayF, satisfiesF(w)= U.

SuchF is moreoverunique.Now, sincechar OiTi5 integrable,

[L~,F]=k~+11’,

for certain functions k, 1 on M. Evaluating both sides of this equationon the

coordinatefunctionst, w in turn, we obtain 1 = 1, k = U; thus:

As one would expect, this dynamicalvector field is homogeneousof degree I
in the fibre coordinates.Moreover,we may identify TQ x JR with the hypersur-

face w = 1 in M; F is tangentto this hypersurfaceand coincidestherewith the
dynamical vector field F of the original time-dependentLagrangian L. The
hypersurfacew = 1 is transverseto the action of the one-parametergroup of

dilations generatedby ~. We may view factoring out by char OiL as a two stage
process:first we restrict to the hypersurfacew = 1, regainingthe original time-

-dependentpicture;and secondwe construct the orbit spaceof F in TQ x JR.
This will be (with luck) a symplecticmanifold of dimension2 dim Q, but there

is no reasonto supposethat it will havean almost tangentstructure,in general,

consistentwith its symplecticstructure. —

The analysis of the canonical description of the homogeneousLagrangianL

startswith the analysisof Im (FL). Clearly, Im (FL) is the submanifoldof T*(Q x
x IR) defined by u + 7r*H = U, where u : T*(Q x IR) -~ JR and ir : T*(Q x JR) -~

-+ T*Q x JR are the projections of T*(Q x IR) T*Q x JR x JR onto the last

factor and the first two factors, respectively.H is the function on T*Q x JR
which for eachfixed t is theHamiltonian correspondingto theregularLagrangian
L~(q, v) = L(q, u, t).

The study of time-dependentHamiltonian systemsusingthe extendedphase
space approach,gives a very nice interpetationof the situation (cf. [3U1). To
H we can associatethe extended Hamiltonian C = u + ~*H on (T*(Q x JR),

with &2Q ,~ the canonicalsymplectic form. ~Cdefinesa global Hamilto-
nian vector field X~<which projectsonto the vectorfield on T*Q x lR, deter-

mined by

~‘H~~H0’ YH(t)=l,

where f~H=p*~Q_dHAdt,p denoting the projection of T*Q x JR onto

T*Q.
The level sets of the extendedHamiltonian ~C define a regular coisotropic

foliation of T*(Q xIR), transverseto the projection ir. For a given leaf Sr =
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= ~C ‘{r}, let denotethe pull-backof to Sr~

Then(.Sr~~ is presymplectomorphicto (T*Q x ~, ~ and the characteristic
distribution of S,. is generatedby X,< Sr (for more details,see[3U]). The dyna-

mical vector field F, correspondingto the homogeneousLagrangianL, is mapped

underFLontoX Ic~<

The reducedphasespaceof the canonicalpicture is given by the orbit space

of X Ic in S (or, equivalently,theorbit spaceof in T*Q x IR) andis clearlyx~~.)0 0

symplectomorphicto the reducedspaceobtained in the Lagrangianpicture, as

describedabove.We finally notice that the canonicalpicture correspondsto the
usual reduction procedurefor (T*(Q x IR), ~QxIR~ provided we use as a Lie
algebrathe 1-dimensionalalgebrageneratedby X~,which is not the Hamiltonian
lift of anyvectorfield on Q x JR.

4.4. Lagrangiansof type III

Whereasthe main body of the paperhas beendevotedto the studyof Lagran-

gians of type II, we also wish to includehere, for completeness,the description

of a generalclassof Lagrangiansof type III, i.e. Lagrangiansfor which dim (char
OiL) <2 dim [V(char OiL)].

Let a be a 1-form on Q and let L be the function inducedby ci on TQ, i.e.

L(q, v) = &(q, u) = (v, aq).

Then
0L = r~a and OiL = da. In order for a vector ~ E l~q~(TQ)to belong

to char OiL it mustbethe casethat

(rQ*~)1(da)q=0,

from which we deducethat charOiL contains at leastall vertical vectors.If we

now furthermoreassumethat dais a symplecticform on Q thencharOiL consists
of the vertical tangent vectorsonly, i.e. charOiL = V(char OiL) = V(TQ). L is

then obviously of type III and so is any Lagrangianobtainedby addingto it a

potentialfunction V(q).
In fact, a Lagrangianof the form L = & can only be of type II if da = U in

which caseL is gauge equivalent to zero. In all other casessuch a Lagrangian

will be of type III.
An interestingexample, from a physical point of view, is provided by the

Dirac-like Lagrangianwhich hasrecentlybeendiscussedfor instanceby Jakubiec

[311.Taking Q = lR2, with coordinates(q1, q2), this Lagrangianreads

L(q,u)=—(q2u’—q’u2—(q1)2—(q2)2),
2
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which is of the form L=&—Vwitha= ~(q2dqi_qidq2) and V= [(q’)2+

+ (q2)2]. Here,da= dq2 A dq’ is the standardsymplecticform on JR2andcharOiL

is spannedby a/au’anda/au2as predicted.

5. SOME FINAL REMARKS

In this paper we have developed a consistentLagrangianreduction scheme

for degenerateLagrangiansystems.It has beenshown that the reductionprocess
works very nicely in the caseof LagrangiansL which admit a global dynamics

and for which char OiL is a tangentdistribution. A typical example of such a

Lagrangian is given by the kinetic energy associatedwith a degeneratemetric.

provided the null distribution of the metric consistsof Killing vector fields.
The link betweenthe presentapproachto the regularizationproblem on the

one hand, and the canonical description of systemswith constraints(Dirac’s

theory) and the Marsden-Weinsteinreduction of systemswith symmetry on
the other hand,has beenclarified. In accomplishingthis programwe haveimpos-

ed several restrictionson the allowed class of Lagrangians,some of which are in
fact ratherstringent.

The overall confinementto finite dimensionalsystems is mainly a matter

of convenienceand does not really affect the validity of the theory. Upon the

necessarytechnical modifications of the proofs, most results should be easily
extendableto the case where Q is a Banachor Hilbert manifold. Of a more

fundamentalnature, however, is the assumptionof the existence of a global

dynamics for the given Lagrangian. In the canonical picture this is reflected
by the fact that only primary constraints are taken into consideration(cf.

proposition 3.1). The main reason for imposing this condition is that the
kind of reduction we have in mind presumesthe existence of a consistent

second-order equation solution to the given Euler-Lagrangeequations. At

least for type II Lagrangians,the existenceof a global dynamicssufficies for

that purpose.The second-orderequation problem becomesmuch more involv-

ed if secondary,(tertiary, etc. . . .) constraintshave to be taken into account

(cf. [6]). The study of the Lagrangianreduction in thesemore generalsitua-

tion will bea topic for further reserach.
A final word is also in orderhere regardingthe almost regularity assumption

which facilitates the transition from the Lagrangianto the Hamiltonian picture.
The combination of almost regularity, type II and existenceof a global dyna-

mics, manifests itself in the fact that only primary first classconstraintsare

present(cf. section3.1).

As pointed out already in [5]. almostregularityas a global conditionis seldom
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satisfied. Hyperregular Lagrangiansare almost regular but, in general,even a
regular Lagrangianneednot be almost regular.In practicalapplications,a possi-
ble way out of the problemmaythenbeto work locally.

APPENDIX -A

Proofof proposition 2.3

We first consider the following general situation. Let ir :M-4N be a suijective
submersion and let R be a type (1,1) tensor field onM. By definition,R projects

onto N if it is ir-related to a type (1,1) tensor field on N, i.e., if there exists a
type (1,1) tensor field U on N such that for every mEM and everyXE TmM

= U~(7r~(X)).

For this to be the case it is clearly necessarythat for every m, m’ E M with
ir(m) = ir(m’) and for every XE TmM and x’ E TmM such that 1r~(x)=

(Al) 7~*(1?m(X))= lr*(Rm.(x’)).

This condition is also sufficient: for, if it holds,we may defineU unambiguously

by setting for everyn EN andy E T~N

U~(y)=

where m is any point of the fiber 7r~{n}and XE TmM any vector such that
ir~(X)= y. Then, U~,is a linear map of 7,N, and by using coordinatesadapted
to ir it is easyto seethat U is a smoothtensorfield onN.

Now, supposethat N is the leaf space of an integrabledistribution V on M.
We then show that the abovenecessaryand sufficient condition for R to pass

to the quotient is equivalentto the conditionsR(V) C V and Im (.C~R)C V for

all ZE V.
First, if m= m’ and x, X’ E TmM then 7r~(x)= 7r~(x’)if and only if x — x’ E

E Vm~The abovecondition (Al) thennecessarilyyieldsR(V) C V.
Second,supposethat m’ = ~~(m) where ~ representsthe flow generatedby

some vector field ZE V. Then Vm’ = 4~t*~m)and so if x’ = ~~~(x)we find that
ir~(x’)= 7r~(x).In orderfor 1T*(Rm(X’)) = IT*(Rm(X)) we thenmust have

~*(~(m)(øt*(X))) _Rm(X) E Vm~

If this is to hold for all t (sufficiently closeto U), for all mEMand for all X E
E 7,,M, we musthave

ImcC~R)CV forall ZEV.

Conversely,supposethatR(V) C V and Im (J2~R) C V for all Z E V. We show that
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for any m’ = Ø~(m),with ~ again theflow generatedby someZ E V, and for any
XE T~,M,x’ E T~,.Msuchthat 7r~(x)= 7r~(X’),we havethat (Al) holds.

Note, first of all, that it is sufficient to assumeX’ = ~~~(x)since, if this were

Tnot so, x’ — ~~~(x)E Vm andwe know thatR(V) C V.
Let am be any covector at m such that (with obvious shorthandnotation)

(Vm~am> = 0. Then, (Vm~~(q~l)*(a)> = (VmSam> = U. So, if we set am =

= (~ i)*(~) then (Vm’~am> = U. Let X anda be the vector field and covector
field obtained by Lie transportingX and am. respectively,along the integral
curve of Z through m, and considerthe function (R(X), a> along that integral

curve.We have

Z((R(X). a>) = (J2~(R(X)), a> since £~a= U,

= ((~~R)(~,a> since £~X= U,

=0 since ImCC~R)CV.

Consequently

(R,(X’), a,> = ~m~’ am>

or,equivalently,

~T’)*~m(X’)) _Rm(X), am> = U.
Thisholdsfor all covectorsam suchthat (VmSam> = U and therefore

(~)*U~m(X’)) —R(X) E Vm

But this meansthat lr*(Rm(x’)) = 7r*(
1~m~)),as required.

So far, m’ is restrictedto lie on someintegralcurve of V through m. But the
leaf of V throughm consistsof all pointsof M which may bejoined to m by a

piecewisesmoothcurve with a finite numberof segments,eachof which is an

integralcurveof V. Thiscompletesthe proof.

APPENDIX B

Proofof theorem2.2

The first step in the proof of this theoreminvolves showing that underthe
given conditions V(TQ) fl V is spanned by vertical lifts of vector fields on Q.

The essentialstep in proving this is carried out in the individual fibres of TQ
and uses their linear (or, strictly speaking,affine) structureandso may usefully

bestatedin termsof a distribution on ~-“

LEMMA. Let & be a distribution on JR’~with the property thatfor every constant



REDUCTION OF DEGENERATE LAGRANGIAN SYSTEMS 397

vector field A on IR”, LA & c &. Then & has a basis of constant vector fields

(and is thus a field of parallel subspaces of IR”).

Proof Consider & as a vector bundle over JR”, say E (a subbundleof TIR”).
Any vector field Z E & may then be thought of as a section of E. We definea

connectionon E as follows: for m E IR”, XE 7, JR?’ and Z asectionof E defined

nearm,

V,Z= (L-Z),

where ~ is the constant vector field correspondingto x. Then VXZE&m by
assumption, and all the defining propertiesof a covariant derivativeoperator

areclearlysatisfied,exceptperhapsthat

VfyZ = fV~Z,

for anyvector field Y and functionf. But

(VfyZ)m = ~‘j~~)m = fm?m~m =

= f(m)(VyZ)~,

as required.
Since the curvature is tensorial it is sufficient to computeR(X, Y)Z when

X = A and Y = B are constantvector fields. For any constantvector field A
we haveVA Z = LA Z and therefore

R(A,B)Z= VAVBZ—VBVAZ=

= LA LB Z — LB LA Z =

= LIABIZ =

= 0.

The connection is therefore flat and so there exists a parallel field of frames,

i.e. vector fields Z1, Z2 Zk E & (k = dim &) such that V,~Z,= U for all X.
Thus in particular LA Z. = U for every constantvector field A andso the vector

fields Z, are themselvesconstant.Then& is thefield of parallelsubspacesspanned
at eachpoint of JR” by the Z,. •

Remark. It is perhaps worth noticing that the previous lemma is a particular

caseof a more generalresult: if a Lie group G acts simply and transitively on
a manifold M and if there is a distribution & onM suchthat LX & C & for every

infinitesimal generatorXa (where a E g), then there is a basis for & which is
invariant under the action of G. This resultmay be provedby adaptingthe proof
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of the lemma, observing that the constantvector fields are the infinitesimal
generatorsof the actionof JR” ontoitself by translation.

COROLLARY. Let be a distribution of vertical subspaceson TQ such that

Im (L~S) C l5~ for every ZE j5.~,. Then there is a distribution V on Q of the
same dimension as V~such that is spanned by the vertical lifts of vector
fields in V.

Proof For anyvector field X on TQandZ E V~.

(CzS)(X) = [Z, S(X)] S([Z, X]) E ~

In particular, if X is projectable then [Z, X] is vertical (since Z is) and S(X)

is a vertical lift, and thus [Z, S(X)] E ~. Moreover,every vertical lift is of the
form S(X) for someprojectableX. It follows that L~V~C V~for every vertical

lift ~

Applying the previous lemma in each fibre. we seethat V~restrictedto the

fibre over mE Q is spannedby vertical lifts of somedim (Vv)-dimensionalsub-

spaceof T Q, which definesVm

We cannow give the proofof theorem2.2.

From the formula

(L~S)(X) = [Z, S(X)] —S([Z, X])

we seethat if Z is vertical, so is (L~S)(X)for anyvector field X. Thus the corolla-
ry applieswith V(TQ) fl V for and shows that thereis a distribution V on Q

of dimension -~- dim V such that V(TQ) fl ~ is spannedby the vertical lifts of

V. Now, at eachpoint XE TQ, the mapS~: V~—~V~hasits image containedin
VX(TQ) ~ and this is also its kernel from which it follows, by the assumption

on the dimensions,that S~is a surjection onto VX(TQ) ~ ~ Consequently,for
any vertical vector field Z, belonging to V(TQ) fl V. there is some vector field
YE ~ such that 5(Y) = Z. In particular,takeZ = X~whereX E V. Then, there

is a vector field YEV such that S(Y)=Xv and so, ~ must be projectableand

projectsontoX.
Consider now the second-orderequationfield F for which C 1~. For any

YE V we have

(LrS)(fl = [F, S(Y)] —S([F, Y]) E V,

since[F, S(Y)] andS([F, Y]) bothbelongto V.
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Thus the projection operators = ~- (I + LrS) and P = -~ (I — £~S),cor-

respondingto thevertical andhorizontaldecompositiondefinedby theEhresmann
connectiongeneratedby F (see e.g. [8]),map ~ to itself. Hence,for everyvector

field YE V, the horizontal projection P(Y) also belongs to t~.In particular,
given X E V there is a vectorfield on ~ which projectsontoX andits horizontal

part also belongsto V; but this isjust X”, thehorizontallift of X, where

Xh= _~([XU,F]+Xc)}

or

Xc= 2Xh~[XU,F]

(cf. [8]). Both terms on the right-hand side belongto ~ and thereforeso does
X’~. We have thus shown that ~ containsthe vertical and the completelifts of

the vectorfields in V. Sincedim V = 2 dim V we seethat V is indeedthe tangent
distribution of V and, as pointed out before (cf. section 2.2), integrability of V

implies integrabilityof V (andvice versa). U
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